Combustion Enhancement via Stabilized Piecewise Nonequilibrium Gliding Arc Plasma Discharge

ARC Research

Combustion Enhancement via Stabilized Piecewise Nonequilibrium Gliding Arc Plasma Discharge

Timothy Ombrello, Xiao Qin, Yiguang Ju, Alexander Gutsol, Alexander Fridman and Campbell Carter

Published 2 May 2012

A new piecewise nonequilibrium gliding arc plasma discharge integrated with a counterflow flame burner was developed and validated to study the effect of a plasma discharge on the combustion enhancement of methane-air diffusion flames. The results showed that the new system provided a well-defined flame geometry for the under- standing of the basic mechanism of the plasma-flame interaction. It was shown that with a plasma discharge of the airstream, up to a 220% increase in the extinction strain rate was possible at low-power inputs. The impacts of thermal and nonthermal mechanisms on the combustion enhancement was examined by direct comparison of measured temperature profiles via Rayleigh scattering thermometry and OH number density profiles via planar laser-induced fluorescence (calibrated with absorption) with detailed numerical simulations at elevated air temper- atures and radical addition. It was shown that the predicted extinction limits and temperature and OH distributions of the diffusion flames, with only an increase in air temperature, agreed well with the experimental results. These results suggested that the effect of a stabilized piecewise nonequilibrium gliding arc plasma discharge of air at low air temperatures on a diffusion flame was dominated by thermal effects.

Inquiries

Request a call Back

For any questions or comments, please call 973-818-3428 or fill out the following form:

973-818-3428
Contact Form 1

Send Request.